ME 2580 Dynamics – Equation Sheet #4

Newton's Laws of Motion

$$\sum_{i} F_{i} = m \underline{\alpha}_{G}$$

$$\sum_{i} (M_{G})_{i} = \sum_{i} (r_{i} \times F_{i}) = I_{G} \underline{\alpha}$$

or

$$\sum_{i} (M_{P})_{i} = \sum_{i} (p_{i} \times F_{i}) = I_{G} \alpha + (r_{G/P} \times ma_{G})$$

Newton's Laws of Motion: Fixed Axis Rotation

$$\sum_{i} F_{i} = m\alpha_{G} = m(r\alpha e_{\theta} - r\omega^{2} e_{r})$$
$$\sum_{i} (M_{O})_{i} = \sum_{i} (r_{i} \times F_{i}) = I_{O}\alpha$$

Work and Energy Principle

$$KE_1 + U_{1\rightarrow 2} = KE_2$$

$$KE = \sum_{bodies} (\frac{1}{2}mv_G^2 + \frac{1}{2}I_G\omega^2)$$

$$KE = \frac{1}{2}I_O\omega^2 \text{ (fixed axis rotation)}$$

Conservation of Energy

$$KE_1 + V_1 = KE_2 + V_2 = \text{constant}$$

$$U_{1\rightarrow 2} = V_1 - V_2$$

$$V_{translational} = \frac{1}{2}ke^2$$

$$V_{rotational} = \frac{1}{2}k\theta^2$$

$$V_{gravity} = mgh_G$$

Center of Mass

$$\underline{r}_G = \frac{\sum_{i} m_i \underline{r}_i}{\sum_{i} m_i}$$

Parallel Axis Theorem

$$I_O = I_G + Md^2$$

Radius of Gyration

$$I_A = m k_A^2$$

Work Done by a Force

$$U_F = \int_s F \cos(\theta) \, ds$$

Work Done by a Couple

$$U_{M} = \int_{\theta_{1}}^{\theta_{2}} M \ d\theta$$