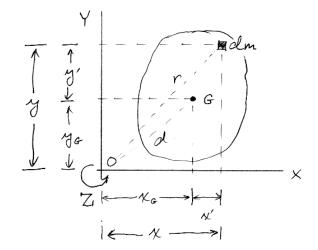
ME 2580 Dynamics Mass Moments of Inertia (2D)

Definition of Mass Moment of Inertia

The figure depicts a rigid body in two dimensions. The moment of inertia of the body about the Z-axis is defined as

$$I_Z = \int_B r^2 dm = \int_B \left(x^2 + y^2\right) dm.$$



The moment of inertia I_Z measures the distribution of mass about the Z-axis. The *larger* the inertia, the *further* the mass is spread away from the axis. The *smaller* the inertia, the *closer* the mass is located to the axis. The units of I_Z are *slug-ft*² or *kg-m*².

Parallel Axes Theorem

The moment of inertia of the body about the Z-axis can be related to the moment of inertia about an axis parallel to Z and passing through G as follows:

$$I_{Z} = \int_{B} (x^{2} + y^{2}) dm = \int_{B} ((x_{G} + x')^{2} + (y_{G} + y')^{2}) dm$$

$$= \int_{B} (x_{G}^{2} + y_{G}^{2}) dm + \int_{B} 2x_{G}x' dm + \int_{B} 2y_{G}y' dm + \int_{B} (x'^{2} + y'^{2}) dm$$

$$= (x_{G}^{2} + y_{G}^{2}) \int_{B} dm + 2x_{G} (\int_{B} x' dm) + 2y_{G} (\int_{B} y' dm) + (I_{Z})_{G}$$

$$= M d^{2} + (I_{Z})_{G}$$

or

$$I_Z = (I_Z)_G + M d^2$$
 or $I_O = I_G + M d^2$ (Parallel Axes Theorem)

Mass Moments of Inertia for Composite Shapes

The mass moment of inertia of a composite shape is the sum of the inertias of the individual component shapes. If G is the mass center of the composite shape, then

$$m_{2}$$
 G_{2}
 G_{3}
 G_{3}
 G_{3}
 G_{3}
 G_{3}
 G_{3}
 G_{3}
 G_{3}
 G_{4}
 G_{5}
 G_{5}
 G_{7}
 G_{7

$$I_G = \sum_i \left(I_G\right)_i$$

where $(I_G)_i$ represents the moment of inertia of the i^{th} component shape about the composite mass center G and may be calculated as follows

$$(I_G)_i = (I_{G_i}) + m_i d_i^2.$$

Here, I_{G_i} represents the moment of inertia of the i^{th} component shape about its own mass center G_i and can usually be found in the tables for common geometric shapes.