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ME 6590 Multibody Dynamics 

Matrices and Second Order Dyadics 

Dyads and Dyadics 
 

o A dyad is a vector-vector product that has the following properties 

 ( ) ( )ab c b c a    (a vector parallel to a ) 

 ( ) ( )c ab c a b    (a vector parallel to b ) 

 ( ) ( ) ( )ab cd e b e a d e c       (a vector with components along a  and c ) 

 ( ) ( ) ( )e ab cd e a b e c d       (a vector with components along b  and d ) 
 

o Dyadics are linear combinations of dyads. A common example is the inertia dyadic. 

o The inertia dyadic of a body about a set of body-fixed axes passing through its mass-

center G may written as 
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o Here, each of the unit vector products  ( , 1,2,3)i je e i j   are called dyads. 

o The inertia values G

ijI   form the elements of the inertia matrix and are called the 

components of the dyadic in the body-fixed reference frame 
1 2 3: ( , , )B e e e . 

o Like vectors, dyadics can be represented by different components in different 

reference frames. Consider the dyadic A  and its representations in two different 

reference frames 
1 2 3: ( , , )R n n n  and 

1 2 3: ( , , )S e e e  
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o Here, ( , 1,2,3)R

ka k   represent the components of A  in 
1 2 3: ( , , )R n n n , and 

( , 1,2,3)S

ija i j   represent the components in 
1 2 3: ( , , )S e e e . 
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Relationship between Dyadic Components in Different Frames 

o This section formulates a relationship between any two sets of components of a 

dyadic. In the development of that relationship, it is assumed that the matrix [ ]TR  

transforms vectors and their components from frame 
1 2 3: ( , , )S e e e  into frame 

1 2 3: ( , , )R n n n . 

o The components of A  in two different reference frames may be related by noting 
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o Comparing the last two equations, we note that  
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Or, in matrix form 

       
T

R SA R A R  (3) 

o This result can be applied to the inertia matrix of rigid bodies. Given  GI  the inertia 

matrix of a body about a set of body-fixed axes passing through the mass-center G, we 

can calculate the inertia matrix  GI  about any other set of axes passing through G by 

using Eq. (3). 

       
T

G GI R I R   

o Here  
T

R  represents the transformation matrix that converts vector components in the 

“prime” system to vector components in the “double prime” system. 


