ME 6590 Multibody Dynamics ## Exercises #3 1. A two-body system is shown in the two figures. The orientations of the bodies are specified relative to the inertial frame R (absolute angles) using 3-2-1 body-fixed rotation sequences. The angles for B_1 and B_2 are θ_{1i} and θ_{2i} (i = 1,2,3), respectively. The positions of the bodies are to be specified using relative coordinates. The position of body B_1 is given relative to R and the position of B_2 is given relative to body B_1 as shown in the second figure. The vectors \underline{s}_1 and \underline{s}_2 represent translation vectors of the bodies. The position vectors \underline{r}_1 and \underline{q}_2 are fixed in B_1 and the position vector \underline{r}_2 is fixed in B_2 . Find $\left\{a_{G_2}\right\}$ the inertial components of the acceleration of G_2 the mass-center of B_2 . Express the results in matrix-vector form using body-fixed angular velocity components. As in Exercises #2, use the components of $\left\{\dot{s}_1\right\}$, $\left\{\dot{s}_2'\right\}$, $\left\{\dot{\theta}_1\right\}$, and $\left\{\dot{\theta}_2\right\}$ as the generalized speeds. 2. Given the same set-up as above, find $\left\{a_{G_3}\right\}$ the inertial components of the acceleration of G_3 the mass-center of body 3 of the multibody system shown. Express the results in matrix-vector form using the body-fixed angular velocity components. As in Exercises #2.1, use the components of $\left\{\dot{s}_1\right\}$, $\left\{\dot{s}_2'\right\}$, $\left\{\dot{s}_3'\right\}$, $\left\{\dot{\theta}_1\right\}$, $\left\{\dot{\theta}_2\right\}$, and $\left\{\dot{\theta}_3\right\}$ as the generalized speeds.