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Introductory Motion and Control 

Rationale of the Tustin Approximation 

 The Tustin approximation is one of the methods commonly used to transform continuous transfer functions 

into discrete transfer functions. Recall that discrete transfer functions can be used to generate difference equations 

which can be coded into digital computer programs to simulate the differential equation associated with the 

transfer function. This process is quite useful when continuous compensators are to be implemented on digital 

hardware. 

 Justification of the Tustin approximation is based on the numerical method used to approximate the integral 

and derivative terms in a proportional-integral-derivative (PID) compensator. Specifically, the trapezoidal rule is 

used to estimate integrals of the system error (associated with the integral term) and the derivative command 

signal (associated with the derivative term). Details of the numerical approximation are provided below. 

  As with any numerical method, this method provides an approximation of the original continuous transfer 

function. The accuracy of the approximation is usually application dependent. More details on this method may 

be found in Franklin, Powell, and Emami-Naeini, Feedback Control of Dynamic Systems, Prentice-Hall, 6th Ed. 

2010. 

Integral Term 

 The command signal 
int ( )u t  associated with the integral portion of the PID compensator is defined as 

  int int
0

( ) ( )
t

u t k e d   (1) 

Here, ( )e t  represents the system error. Given a discrete sampling time of T , the integral in Eq. (1) can be broken 

into two parts as follows. 

 ( ) ( ) ( )
( 1)

int int int int int int
0 0 ( 1) ( 1)

( ) ( ) ( ) ( ) ( 1) ( )
kT k T kT kT

k T k T
u kT k e d k e d k e d u k T k e d       

−

− −
= = + − +     (2) 

To simplify the notation, the following definitions are used. 

 ( ) ( )int int int int int int, ( 1) ( 1) , ( ) ( ), ( 1) ( 1) ,u k u k T u k u kT u k u k T− − + +   

 ( ) ( ), ( 1) ( 1) , ( ) ( ), ( 1) ( 1) ,e k e k T e k e kT e k e k T− − + +  

Using these definitions, Eq. (2) can be rewritten as follows. 

 
int int int

( 1)
( ) ( 1) ( )

kT

k T
u k u k k e d 

−
= − +   (3) 

 The figure to the right shows that the area under the function ( )f t  

from ( 1)k T−  to kT  can be estimated using the blue trapezoidal area. 

Using this approach, the integral of Eq. (3) can be approximated as 
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 ( )
( 1)

1
2

( ) ( ) ( 1)
kT

k T
e d e k e k T 

−
 + −  (4) 

Substituting from Eq. (4) into Eq. (3) gives 

 ( )int int int
1
2

( ) ( 1) ( ) ( 1)u k u k k e k e k T − + + −  (5) 

 Eq. (5) can be expressed in the z  domain as follows. 

  1 1

int int int
1
2

( ) ( ) ( ) ( )U z z U z k T E z z E z− − = + +   (6) 

Multiplying through by z  and rearranging terms gives the discrete transfer function from the error signal to the 

integral command. 

 ( ) ( ) ( )int
int int int

1 1
2 2

1
1 ( ) 1 ( )

1

U z
z U z k T z E z z k T

E z

+ 
− = +  =  − 

 (7) 

Derivative Term 

 The command signal ( )du t  associated with the derivative portion of the PID compensator is defined as  

  ( ) ( )d du t k e t   (8) 

To apply the trapezoidal rule, first integrate Eq. (8). 

 ( )
( )

( 1) ( 1)
( ) ( ) ( 1)

kT e k

d d d
k T e k

u d k d k e k e k  
− −

= = − −    

The integral on the left side of the equation is now approximated using the trapezoidal rule giving  

 ( ) ( )1
2

( ) ( 1) ( ) ( 1)d d dT u k u k k e k e k+ − = − −  (9) 

 Eq. (9) can be expressed in the z  domain as follows. 

  ( ) ( )1 11
2

( ) ( ) ( ) ( )d d dT U z z U z k E z z E z− −+ = −  

Multiplying through by z  and rearranging terms gives the discrete transfer function from the error signal to the 

derivative command. 

 ( ) ( ) ( )1
2

2 1
1 ( ) 1 ( )

1

d d
d d

U k z
T z U z k z E z z

E T z

− 
+ = −  =  + 

 (10) 

Tustin Approximation 

 The discrete and continuous transfer functions for the integral and derivative terms of PID compensators are 

compared in Eqs. (11) and (12) below. 

 Continuous integral form: ( ) intint
kU

s
E s

=  Discrete integral form: ( )int
int

1
2

1

1

U z
z k T

E z

+ 
=  − 

 (11) 

 Continuous derivative form: ( )d
d

U
s k s

E
=  Discrete derivative form: ( )

2 1

1

d dU k z
z

E T z

− 
=  + 

 (12) 
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Note in both cases that the s  and z  portions of the derivative and integral transfer functions are algebraic inverses 

of each other – the continuous transfer functions have s  and 1
s , and the discrete transfer functions have 

2 1

1

z

T z

− 
 + 

 

and 
1

2 1

T z

z

+ 
 − 

. Furthermore, it is clear from observing Eqs. (11) and (12) that the discrete transfer functions can 

be found by simply replacing the variable s  in the continuous transfer functions with 
2 1

1

z

T z

− 
 + 

. 

 Replacing s  in a continuous transfer function with 
2 1

1

z

T z

− 
 + 

 to create an approximate discrete transfer 

function is referred to as Tustin’s approximation. It is one method of converting continuous transfer functions 

into approximate discrete counterparts. Another common method is the matched pole-zero (MPZ) method. The 

MPZ method is based on mapping the poles and zeros of a continuous transfer function using the relationship 

sTz e= and preserving the low frequency gain. As mentioned above, the accuracy of any numerical approximation 

is usually application dependent. 


