Intermediate Dynamics Moments and Products of Inertia and the Inertia Matrix

Moments of Inertia

A rigid body *B* is shown in the diagram below. The unit vectors $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ are fixed in the body and are directed along a *convenient* set of axes (x, y, z) that pass through the mass center *G*. The *moments of inertia* of the body about these axes are defined as follows

$I^G_{xx} = \int_B (y^2 + z^2) dm$	$I_{yy}^G = \int_B (x^2 + z^2) dm$	$I_{zz}^G = \int_B (x^2 + y^2)$
-------------------------------------	-------------------------------------	---------------------------------

Here, *x*, *y*, and *z* are defined as the \underline{e}_i (*i* = 1,2,3) components of $\underline{r}_{P/G}$ the position vector of *P* with respect to *G*, that is, $\underline{r}_{P/G} = x\underline{e}_1 + y\underline{e}_2 + z\underline{e}_3$.

Moments of inertia of a body about an axis *measure the distribution* of the *body's mass about that axis*. The smaller the inertia the more the mass is concentrated about the axis. Inertia values can be found either by *measurement* or by *calculation*. Calculations are based on *direct integration* and/or on the "*body build-up*" technique. In the body build-up technique, *inertias of simple shapes are added* to estimate the inertia of a composite shape. The inertias of simple shapes (about their individual mass centers) are found in *standard inertia tables*. These values are transferred to axes through the composite mass center using the *Parallel Axes Theorem for Moments of Inertia*.

Parallel Axes Theorem for Moments of Inertia

The inertia (I_i^A) of a body about an axis (*i*) through any point (*A*) is equal to the inertia (I_i^G) of the body about a parallel axis through the mass center *G* plus the mass (*m*) times the distance (d_i) between the two parallel axes squared.

$$I_{ii}^{A} = I_{ii}^{G} + m d_{i}^{2}$$
 (*i* = *x*, *y*, or *z*)

Kamman - Intermediate Dynamics - Moments and Products of Inertia and the Inertia Matrix - page: 2/4

Note that moments of inertia are *always positive*. From the parallel axes theorem, it is obvious that the *minimum moments of inertia* of a body occur about axes that pass through its *mass center*.

Products of Inertia

The *products of inertia* of the rigid body are defined as

 $\boxed{I_{xy}^G = \int_B (xy) \, dm} \qquad \boxed{I_{xz}^G = \int_B (xz) \, dm} \qquad \boxed{I_{yz}^G = \int_B (yz) \, dm}$

The products of inertia of a body are measures of *symmetry*. *If a plane is a plane of symmetry, then the products of inertia associated with any axis perpendicular to that plane are zero*. For example, consider the *thin laminate* shown. The middle plane of the laminate lies in the *XY*-plane so that half its thickness is above the plane and half is below. Hence, the *XY-plane* is a *plane of symmetry* and

Bodies of revolution have two planes of symmetry. For the

configuration shown, the XZ and YZ planes are planes of

symmetry. Hence, *all products of inertia are zero* about the

$$I_{xz} = I_{yz} = 0$$

X, Y, and Z axes.

Products of inertia are found either by *measurement* or by *calculation*. Calculations are based on *direct integration* or on the "*body build-up*" technique. In the body build-up technique, *products of inertia of simple shapes are added* to estimate the products of inertia of a composite shape. The products of inertia of simple shapes (about their individual mass centers) are found in *standard inertia tables*. These values are transferred to axes through the composite mass center using the *Parallel Axes Theorem for Products of Inertia*.

Parallel Axes Theorem for Products of Inertia

The product of inertia (I_{ij}^{A}) of a body about a pair of axes (i, j) passing through any point (*A*) is equal to the product of inertia (I_{ij}^{G}) of the body about a set of parallel axes through the

 z

mass center G plus the mass (m) times the product of the coordinates $(c_i c_j)$ of G relative to A

(or *A* relative to *G*) measured along those axes.

 $I_{ij}^A = I_{ij}^G + m c_i c_j \quad (i = x, y, \text{ or } z \text{ and } j = x, y, \text{ or } z)$

Products of inertia may be *positive*, *negative*, or *zero*.

The Inertia Matrix

The inertias of a body about a set of axes (passing through some point) are often collected into a single *inertia matrix*. For example, the inertia matrix of a body about a set of axes through its mass center G is defined as

$$\begin{bmatrix} I_G \end{bmatrix} = \begin{bmatrix} I_{11}^G & I_{12}^G & I_{13}^G \\ I_{21}^G & I_{22}^G & I_{23}^G \\ I_{31}^G & I_{32}^G & I_{33}^G \end{bmatrix} = \begin{bmatrix} I_{xx}^G & -I_{xy}^G & -I_{xz}^G \\ -I_{xy}^G & I_{yy}^G & -I_{yz}^G \\ -I_{xz}^G & -I_{yz}^G & I_{zz}^G \end{bmatrix}$$

There is a *different inertia matrix for each set of axes passing through a given point*. There is *one set of directions* for each point that *renders the inertia matrix diagonal*. These directions are called *principal directions* (or *principal axes*) of the body for that point. In general, the *principal axes* are *different for each point* in a body. Finally, note that *all inertia matrices are symmetric*. <u>The Inertia Dyadic</u>

The inertias of a body about a set of axes (passing through some point) may also be collected into a single *inertia dyadic*. For example, the inertia dyadic of a body about a set of axes through its mass center *G* is defined as

$$I_{\widetilde{z}}_{G} = \sum_{i=1}^{3} \sum_{j=1}^{3} I_{ij}^{G} \underline{e}_{i} \underline{e}_{j}$$

where I_{ij}^G (*i*, *j* = 1,2,3) are the *elements* of the *inertia matrix*, and the *vector product* $e_i e_j$ is called a *dyad*.

The *dot product* of a dyad with a vector results in another vector. A dyad can be pre-dotted or post-dotted with a vector, and the results of the two operations are generally different. There are many *properties* that dyads satisfy. Three *properties* that are useful when using inertia dyadics are listed below.

1.
$$c \cdot (ab) = (c \cdot a)b$$
 and $(ab) \cdot c = a(b \cdot c) = (b \cdot c)a \implies c \cdot (ab) \neq (ab) \cdot c$
2. $(ab + cd) \cdot e = (b \cdot e)a + (d \cdot e)c$
3. $ab \neq ba$

The third property follows easily from the first property.

As noted above, the *shorthand notation* for the *inertia dyadic* of a body about its mass center G is I_{z_G} . This notation is particularly useful when defining the *angular momentum* of a body.